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CHAPTER I

INTRODUCTION

Various methods have been attempted to predict the cold circuit

characteristics of coupled cavity circuits for traveling wave tubes. These

methods include approximate field analyses [I] and Lumped element equivalent

circuits [2]. None of these methods can predict the circuit characteristics

to a high degree of accuracy. The result Is that the circuit design procedur,

includes physically building and measuring a "first-cut" circuit, and making

modifications to obtain the final product. These modifications Include both

engineering and machining costs.

With the advent of Large digital computers with Low price/performance

ratios, and the development of numerical techniques for efficiently handling

the massive amounts of data storage necessary for self-consistently solving

Maxwell's equations with sources, it has become financially feasible to make

use of computer codes which perform three-dimensional "numerical experiments."

Codes of this type have been used for a number of years in Plasma Physics,

and particularly for EMP calculations.

This study makes use of a three-dimensional plasma simulation code

called SOS (Self-Optimized Sector) [3],developed by Mission Research Corporation.

By making certain modifications to the source models and using the output

data of the code as input to a Fast Fourier Transform routine, it was possible

to perform numerically the resonance tests by which a circuit's Brillouin

plot Is typically found.

0%
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Chapter II will introduce the code and its method, which is a great

contrast to the eigenvatue approach used in codes such as Superflsh [4].

Chapter III discusses the various source methods which were used. In

Chapter IV various test cases are discussed which establish the validity of

the method. Chapter V gives the results of a staggered-sLot, coupled cavity

circuit, and compares these to measured values. The problem of resolution 'p

and an apparant numerical instability are discussed in Chapter VI, with an

eye towards cost effectiveness. Chapter VII gives a summary of results and

recommendations for further study. In Appendix A, the second order accuracy

of the non-uniform grid, centered difference derivative method Is proved.

* Appendix B gives a derivation of the Discrete Fourier Transform pair. The
equations necessary for fitting a cubic least squares with boundary condi-

tions (zero first derivative) are developed in Appendix C.

-2-
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CHAPTER I I

THE COMPUTER CODE

The SOS (SeLf-Optimized Sector) code [3] is a fully three-dimensional,

electromagnetic, simulation code designed for applications In plasma physics

involving charged particles and electromagnetic waves. SOS solves the time-

dependent Maxwell equations In finite difference form and uses particle-In-

cell (PIC) methods to compute current density sources. Particle trajectories

are computed using the relativistic equations of motion. The code was or-0

ginally developed to run on the CDC Cyber 176. Later revisions have been

A,. made to the code to allow it to function on the Cray-1 and the DEC 11/780

(VAX) computers. This project was performed entirely on a DEC machine.

This study dealt only with the "coLd-test" of a coupLed-cavity

circuit, so we need only concern ourselves with the electromagnetic part

of the code.

Maxwell's equations are

-T at

The first two of these completely define the temporal evolution of the

fields. The second two may be viewed as initial conditions since they

deal with conservation of magnetic and electric charge, which, if satis-

fied initially, will be satisfied by all subsequent fields generated by '4

the first two equations.
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In component form, the two curl equations become

atEi U-o'*J + (piocoh 2h30
" {a2 (h3B3 ) -a 3(h2B2 )}

alEs = -ao-IJ 2 + (pocoh 3hi)' {a(hiB1 ) - ai(hB 3 )}

E3 = -Co1J, + (I0ocohih 2 T {ai(h 2B2 ) -a 2 (h1B1 )} (2)

atB = -(h2hs )
" {a2(h3E) - a3 (h2E2 )}

atB2 = -(h3hlr {a3 (hlE1 ) - al(h 3E3 )}

3tB3 = -(hih 2 )
"1 {a8(h 2E2 ) - a2 (hiEl)}

Where ai denotes the partial derivative with respect to the i
th

coordinate, and the coefficients, hi, are the differential Length elements

in the coordinate system of interest, e.g.
0i

in rectangular coordinates: hi=1; h2=1; hs=1

in cylindrical: hicl; h2 =r; h3 =1

and in spherical: h1=1; h2=r, hs=rsin8.

One can apply various finite difference schemes to these equations

based on accuracy, convergence, and cost considerations. SOS contains

four finite differencing algorithms from which the most appropriate for

a given application may be chosen. Of these, two deal with regions of

S. temporally and spatially varying conductivity and need not be considered

for our application. A third algorithm uses the centered difference formula

for the spatial derivatives, but Is implicit in the time domain of the

magnetic field. That is, a "guess" at the future value of the magnetic

field is used to calculate the current electric field. This electric

field is then used to calculate the next magnetic field value which is

compared to the guess. By adjusting the guess appropriately, the algorithm

-4-
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converges to the desired field values. The fourth method is a straightforward

centered difference. In this approach, the electric field is found excLusively I

from the previously calculated magnetic field values. It is therefore expLicit

so that no iterative procedure is needed.

Although the third approach wiLl yield more accurate results, it is ]
clearly a more expensive method. For this reason, the explicit, centered

difference algorithm was used for calculations in this report. This method

can be shown (see Appendix A) to yield second order accuracy to the true ii
derivative, while retaining a fairly flexible grid spacing requirement.

SOS contains the option to sample any of the field components at a

fixed point in space as a function of time. This is accomplished by reading

the field amplitude at discrete points in time of fixed interval, and writing

the result to an output file. It is straightforward then, to apply a Fourier

Transform to this data so as to obtain the frequency characteristics of the

device under test. To this end, we introduce the Discrete Fourier Transform

pair [5]

N-I
E(m) = E ¢(n) e-J(2nt /N)m m=O, 1, 2, ... , N-1

n=O

N-1N - m)ej( 2m r/N)n n=O, 1, 2, ... , N-IE:(n) = . E( m,-.e

m=O

where N is the number of samples taken. (See Appendix B for a derivation

of the DFT pair.)

-5-
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If we define to as the sampling Interval, then we have .-
mt0  f n

t =- and
N -T;

Notice that Nt. is the total time through which the fields have been tracked

in our numerical experiment. I
The cost (CPU time) of a simulation is determined primarily by two

factors: the number of grid points, and the number of time steps. Obviously,

we want to minimize both in order to keep the cost down. The first is Limited j
by the requirement to fully define the physical details (e.g. corners) of the

structure. The number of time steps is more complicated, as it is a function

of several factors.

The spacing in frequency space is determined by the total time of

the run, i.e.

fo = N O ".,
0 Nt0

Therefore, for a desired value of fo, we can keep N small by making to Large.

However, in order to have stability, to is bounded by the Courant Stability

Criterion [6]
2

iiwhere the h i are the coefficients of the differential Length elements defined ..

above, and the 6xi are the differential Length elements. For example, in

cytindricaL coordinates

(_)2 \

I

r, Zr

or

t < Q2r J
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The final factor to be considered is that in order to use a Fast

Fourier Transform, fo and to must be chosen so that N is an Integer power of "o

two. This Last consideration did not pose any problem In this study because

If the "power of two" restriction was inconvenient, the FFT could be replaced

by a Discrete Fourier Transform (not fast). The extra cost incurred by this

change was insignificant in comparison to the cost of running the plasma

simulation.

-7-i
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CHAPTER III

SOURCE CONF IGURAT ION

The sources available in the code (SOS) were not suitable for our

purposes, so the approach used was to manipulate one component of the

electric field at various points in space. This was accomplished by

adding the desired source (e.g. a point source oscillating at a desired

frequency, or a point impulse function) to the existing field value as a

"correct ion" term.

This approach allowed for a good deal of freedom in coupling to the

desired resonance. In fact, it was possible to change the coupling separately

in physical and frequency space. By using an impulse as the source, all fre-

quencies were excited. If the impulse was tailored In space to fit the

desired field pattern (which is known in the case of a simple cavity) then p.

the code no longer sees this as an Impulse, but rather as Initial conditions.

This is because we are using the algorithm (see Chapter II) which Is explicit,

and our source is being artificially added to the existing fields. When we

adjust the field values at all points in the volume simultaneously to

* exactly match one mode, then there are no steps In the field in physical

* .space, and the code does not see the step In time, but rather treats it

as If that mode had always been there and we get a single spike in the

* frequency spectrum.

Regardless of what type of source is used, the energy going into

the system will try to resonate in the natural modes of the system. Most -

-8-
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of the energy, in fact, should go into the natural mode which we are the

closest to, with respect to frequency and field shape.

Since the field shape is known exactly in a simple cavity, and

approximately in a reentrant cavity, initial conditions proved to be a good

way to find the primary resonance. Having a source point oscillating at a

frequency close to the desired resonance also provided good results.

Figures 3.1 and 3.2 show the frequency spectrum of a simple and

reentrant cavity, respectively, in which a point source oscillating at a

frequency close to the primary resonance was placed. Notice that the

shape of the curve in each case is basically that of a peak at the primary

resonance, with the source and higher order resonances superimposed upon it.

Figure 3.3 shows the spectrum, after a beam hole was introduced. Notice

that now the shape of the curve has changed significantly and there is

energy at zero frequency which is comparable to the amount at the primary

9 resonance. After introducing the slot, while still using a point source,

Figure 3.4 shows the zero frequency amplitude to be considerably above

the primary resonance. In this Latter case, if we Look at higher frequencies,

as in Figure 3.5, we see that the code is predicting an incredible amount of

energy going into some higher order mode (about 46 GHz). This high frequency

* problem is not true for the "no-slot" case, as shown in Figure 3.6.

From these figures, it is evident that the predicted spectrum is not

physically realistic for either the case of a haLf-cavity with a beam hole,

or a half-cavity with a beam hole and 800 slot. Three possible methods of

improving the simulation come to mind immediately. First, the number of

grid points might be increased to improve the accuracy of numerical

0

II
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derivatives. Second, the source might be placed at the resonant frequency

(i.e. Improve the coupling In frequency space). FinaLly, the source might

be tailored to fit the field shape of the desired mode (i.e. improve the

coupling in physical space).

The first suggestion, improving the grid, did change the results,

but did not solve the problems mentioned above. This can be seen by

comparing Figure 3.7 to Figure 3.5. The second suggestion amounts to knowing

the solution to find the solution, so it is not usable. The third idea

is useful, because we know the desired mode has a concentration of electric

field across the ferrules, so it seemed reasonable to change from a single

point source to a ring of sources Located at all grid points between the

ferrules. This method solved the anomaly of having Large amplitude at

zero frequency, as shown in Figures 3.8 and 3.9. However, it did not

solve the high frequency problem for the cavity with a slot, as shown in

Figure 3.9.

With these improved results, it seemed good to observe the effect

of our other two suggestions. Figures 3.10 and 3.11, with a finer grid,

may be compared to Figures 3.8 and 3.9. Figures 3.12 and 3.13, in which the

source is placed at the resonant frequency, may be compared with Figures

3.8 and 3.9. In each case, the change does not affect the result of

interest, which is the detection of the primary resonance and its Location.

-10-
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* 10 -
a SOURCE 

1.204

A. (4.0 GHZ)
TM010 RESONANCE 1.

(4.52 GHz)

3

3

0 1 2 3 4 5 6 7 8 9 10 11 12- 13 14
F (GHz)

FIGWIRE 3.1 - AmpLitude vs. Frequency in a simulation of a simple

cavity in which the source was a point, oscillating just below

(in frequency) the primary resonance. Note that the shape of

* the curve is primarily a peak at the desired resonance, with _
the source and higher order resonances superimposed uoon it.

Zimensiofls are inches.
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10

MODIFIED
6 TM010 FROM

SOURCE MORENO (4.2 GHz)

1.0

.275

--f -. 204 J!

LKV

1 2 3

F (GHz)

FIGURE 3.2 - Amplitude vs. Frequency In a simulation of a

reentrant cavity of indicated dimensions. Again, a point
source was placed just below the desired resonance, whi-ch
was known from Moreno's curves [8]. The curve is not as
srx oth as in the. previous figure, but the primary resonance
is predicted by the code to be just where we expect It.
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10

CAVITY WITH BEAM HOLE,6

1.0

3 1.275

SOURCE

.102--

- 3

10

3

10 2

04 6 8 10 12 14
IF (GHz)

FIGURE 3.3 - A reentrant cavity after the inclusion of a beam
hole. The extension of the beam hole is to account for the waLL

thickness between cavities. In this case, no predicted value for

the resonance was available, but as can be seen from the figure,
the source was placed slightly above the resonant frequency.
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10 CAVITY WITH 80 SLOT'

3

1 -

6

3

W

3

I I , I

0 10 20 30 40 50
F (0Hz)

FIGURE 3.5 - This figure is the same as Figure 3.4, but it shows

aLL of the data obtained from the FFT (not just 0-14 GHz as in

the previous figure). Two properties of this curve are somewhat

disturbing. First the large amplitude at zero frequency, and

second the large amplitude at high frequency.
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3- CAVITY W"T 800 SLOT
IMPROVED GRID

3

3U

10

3-

010 20 30 F WHO 40 so

FIGURE 3.7 -This is the same structure that was simulated in

Figure 3.5, but with a better grid (i.e. more grid points).

Improving the grid has clearly not solved either of our problems,

in fact it has made the zero frequency amplitude considerabLy

* Iarqer.
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104

3
CAVITY -NO SLOT

RING ACROSS FERRULES AT
3 3.0 GHz

10

6

a 3 .

10 2

3

10

3

1.0-

6

3

010 20 30 40 50

F(WHO

FIGURE 3.8 -By changing the source from~ a single point to a
ring of points in the e-Z. plane corresponding to the ferrute
(i.e. improving the coupling to the desired mode in physical.
soace), the zero frecuency problem of Figure 3.6 was eliminated.
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CAVITY - 800 SLOT

RING ACROSS FERRULES AT
3.0 GHz

.-..

6- 3I
3

4 N '

102 

I

3

0 10 20 30 40 50
F (GHZ)

FIGURE 3.9 - With the inclusion of the improved source, the 711
zero frequency amplitude was reduced to a reasonable value for
the cavity with the stot. It Is evident, however, that this

* did not help the problem at high frequencies.
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10'

CAVITY -NO SLOT
3- RING ACROSS FERRULES AT

3.0 GHz
IMPROVED GRID

6

3

* 10

6-

3

1-

60 10 20 30 F(H)40 50

FIGURE 3.10 -By comparing this to Figure 3.8, the resutts of ~ .

using a finer grid with the improved physical space coupLing may
be seen for the cavity with no sLot.
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10

6.

CAVITY - 80o SLOT
RING ACROSS FERRULES
IMPROVED GRID

3

3

- 11

6 1 ..,

*IN. I

3-

1 ' I ;I II-

0 10 20 30 40 50
IF (0Hz)

FIGURE 3.11 - This result is a sort of hybrid of Figures 3.7 and

3.9. The ring source at the ferrule has kept the zero frequency
amplitude low, as in Figure 3.7, but the improved grid has Intro-

duced some other resonances which were evident in Figure 3.9.

-21-

• J........... ... . ....... ' ..- -- ,2 "•,J .,". .. #,. .... .-....-..
'" . " .. . "

S~%* % . .



6

3-
CAVITY - NO SLOT

RING ACROSS FERRULES AT
4.0 GHz

6

3

6

3

101
010 20 30 40 s0

F (GHz)

F IGURE 3.12 -Placing the source on the frequency found in
Figure 3.8 to be the resonant value, the curve is very clean
as one wouLd expect since we are coupling almost perfect~y to
a single mode.
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CAVITY - 80O SLOT
3 RING ACROSS FERRULES AT

3.98 GHz

4 --

3

N

w 1cp

6

3 -

0 2

6

3

10 ,,
0 10 20 30 (GHz)40 50

FIGURE 3.13 - Placing the source on the resonance does not have
the same effect when our simulation includes a slot. It seems
clear that the high frequency problems are a numerical anomaly
which are not physically realistic and should not concern us as
Long as they do not affect our ability to accurately determine
the true resonance of our structure.
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CHAPTER IV

RESULTS

As illustrated in the previous chapter, the approach used in this

project was to check the accuracy of the code (SOS) and the FFT routine

against simple test cases, and work towards the desired structure. The

obvious choice for a first test case was a right-circular-cylindrical

cavity. There are two reasons why this was a good choice. First, the

results could easily be compared to the theoretical solution [7], and second,

a relatively small number of grid points accurately represented the structure

so that test runs on the code were inexpensive.

Accurate results were obtained for the simple cavity case (less than

1% error), so the next logical structure was a reentrant cavity. A

reentrant cavity, which had a variable inner conductor height, was available

ior measurement. The calculated (by SOS) and measured values are shown

versus inner conductor height in Figure 4.1. In all cases, the measured

value agreed with the value given by Moreno's curves [8] to two digits

,, (which is the limit of accuracy of the curves). The error of the calculated

value from the measured value varies from 0.9% at h/L=O to 4.8% at h/L=5/6.

* The true error, i.e. between the simulation and the LossLess cavity which

it simulated, was probably Less than indicated by these measured values.

The reason for saying this is that the reentrant cavity with h/L=O is really

a simple cavity, and the theoretical resonance was between the calculated

and measured values. The calculated value was only in error by 0.2% when

compared to the theoretical value at h/LzO.

- 24-
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After Inserting a beam hole and a coupling slot, our structure is

one half of a coupLed cavity, whose resonant frequency is the upper cutoff

of our structure. (ActuaLly, this is one half of an "in-Line" slot coupled

cavity. However, the change in resonant frequency of a single cavity in

which the slots were in-Line as compared to one In which they were staggered

was measured as Less than 0.5%.) Figure 4.2 shows the measured and predicted

(SOS) resonance values at various stages of cavity development. It is

interesting to notice that the accuracy becomes significantly worse when

the slot is introduced. This is, in fact, the point at which the problem

truly becomes three dimensional (it has up to this point had circular

symmetry). It should be pointed out that the predicted values in Figure 4.2

are actually the center point of error bars (for reasons which will be

explained in Chapter V), but for clarity only a point is shown at this

stage. Although the predicted upper cutoff value is in error by approxi-

mately 5% (± uncertainty), we are getting a distinct resonance which

encourages us to try to find more points on the Brillouin curve.

Simulations of multiple cavities were performed, which predicted

multiple resonances as expected. Two cavities with the grid overlaid

are shown in Figure 4.3. Notice the non-uniform grid, as mentioned in

Chapter II, and justified in Appendix A. These multiple cavity runs were

aLL done with a ring of source points between the ferrules In one cavity -,

only, osciLlating at a frequency below the resonances. Figure 4.4 is the

* resulting predicted w-8. The solid Lines are drawn through the physically

measured values. If the best end of the error bars Is taken as the

predicted value, then the worst error is about 3%. Taking the worst end

-25-
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of the error bars, the predicted value is off by 6%. Therefore, the worst

error is somewhere between 3 and 6%. Although this is a disappointingly

Large value for the error in prediction, it does represent a slight improve-

ment in phase velocity prediction over typically used equivalent circuit "
techniques. In Chapter VI, it is noted that by application of a "least

squares" cubic to the data, this error can be significantly reduced. For

most applications, the upper and Lower cutoff are not the areas of interest.

The area in which we would desire the most accuracy would be centered about

Sp=w/2 , say from r/3 to 2r/3. In this reduced region, using the Least

squares curve, the error is everywhere Less than 1%. This seems to be a

very satisfying result.
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FIGURE 4.1 -Measured and calculated (by the code) resonant
frequencies of a reentrant cavity with various values of
inner conductor height (h). ALL dimensions are Inches,
the two radii and the cavity Length are fixed, the inner
conductor height being the onLy variabLe.
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4.6

4. MEASURED VALUE
B PREDICTED BY 808

4.4

. 4.
0

.. 4.2
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W 4.1
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U.
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* 3.8 E

3.7,
A ' CAVITY SHAPE

FIGURE 4.2 - Measured and predicted (calculated)
values of resonani frequency for the various stages
of evolution from a simple cavity to the half
"coupled cavity" with beam hole and slot. Even
with the sudden increase in error at the inclusion
of the slot, the error is still below 5%.
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u I

FIGURE 4.3 - Front and cross-section views of a two cavity

stack with the grid used in the simulation indicated. Notice
that the grid was chosen to be uniform in e and ;z but non-
uniform in r.
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4.0~

1*3.

3.2-

* No3.2

2.8

2.I'.

MEASURED DATA FROM 8 CAVITY STACK . '

A1200 SLOT
CALCULATED BY CODE

2.4-o 1600 SLOT

2.0-
0 v/4 'r/2 3 1/4 1 L

Pp.

FIGURE 4.4 -The BrilLouin plot of coupled-cavity circuits with
the indicated coupling slot angle. The calculated values are

* single data points predicted by a particular run with uncertainty
shown by error bars (see Chapter V on resolution).
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CHAPTER V

RESOLUTION

Figure 5.1 shows an analog signal which is just resolved by the

common 3 dB definition. If discrete samples of the signal are taken, as

shown in Figure 5.1, at regular intervals of fo, where fo is comparable

in magnitude to the width of the peaks, then we see (in Figure 5.2) that

the discrete samples are not resolved by the 3 dB definition. Furthermore,

we cannot determine from the discrete samples exactly where the peak is

located. We can, however, say that the peak is within half the sampling

width of the local maximum sample. With these two factors in mind, we

have defined in this study a discrete sample to be resolved if there exists

a sample which is a Local maximum. That is, if the sample is greater than

both of its nearest neighbors. Furthermore, we will say that the peak is

resolved to ft. That is,

fmax Lo< fpeak < fmax Lo

2 2

We have seen that the spacing In frequency, fo, is determined by

the total run time, Nto.

I ]
Therefore, the total run time should be Long enough to resolve the

resonances in two ways. First, if more than one resonance is expected,

then fo must be small enough to allow both of the peaks to be Local -,

maxima. Second, fo must be small enough to determine the location of

-k 1A S ,°4'
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each peak to reasonable accuracy. One would expect then, that the Limiting

factor In resolution would be the cost associated with run time.

The Limiting factor for this study, turned out to be an instability

in the calculations. For an undetermined reason, It was found that the

higher frequencies grew in amplitude much faster than the Low ones. When

these high frequencies became extremely Large in amplitude, the Lower

frequencies (which were in the range of interest) were obscured by them.

Figures 5.3 through 5.5 illustrate this problem. In Figure 5.3, the source,

at 3.0 GHz, and the Lowest resonance, expected just below 4.0 GHz, are not

yet resolved due to the large size of the frequency spacing (0.4 GHz).

After doubling the run time, Figure 5.4 shows that the source and primary

resonance are resolved, but most of the energy is now in the higher

frequencies, with the major resonance at about 46 GHz. Figure 5.5 shows

that after again doubling the run time, the source and primary resonance

are now totally obscured by the resonance at 46 GHz.

Since this instability was one which grew in time, it was possible

to perform one Long run and take the data for the FFT from time zero up

until the instability just obscured our desired results and then truncate

all following data. This was the method used to obtain the w-B plot shown

in Chapter V. In order to obtain the data shown there for the 1600 slot,

two runs were performed which modeled three and four cavities, and gathered

slightly more data than could be used (due to the instability). These

runs were performed at a total cost of less than $150.
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3dB

fl f2FREQUENCY

ANALOG SIGNAL WITH
DISCRETE SAMPLINGS

F IGURE 5. 1 -Discrete samples overLaid on an analog signal.
with two peaks that are just resolved by the common 3 dB
definition.

S2

fl.f FREQUENCY

DISCRETE REPRESENTATION
* OF THE SIGNAL

FIGURE 5.2 -Discrete sampLes from Figure 5.1. The samples are1

5,. not resolved by the 3 dB definition, and furthermore, the true 7
Location in frequency of the maximum may only be determined to

* the Limits indicated.
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FIGURE 5.4 By doubling the sampling rate (to every 200 MHz)
the resonance and source are resolved, but the high frequency

* amplitudes have grown.
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CHAPTER VI

CONCLUSIONS AND RECOMENDATIONS

It has been pointed out to the author, that the shape of the predicted

w-13 is quite unlike the curves which are characteristic of staggered slot

coupled cavity circuits (first derivative zero at Bp=O and 7, and the

second derivative changing signs at approximately ap=ir/2). While this

objection is true, it is a fact that may be used to one's advantage. By

applying a Least-squares fit to a cubic function with zero first deriva-

tives at the end points (see Appendix D), it is possible to determine a

curve which is fairly close to the measured one. Figure 6.1 demonstrates

this method, where the center points of the error bars has been used for

the data in equation C.2. The predicted curves Look very much as expected

now. The maximum error, which occurs at the upper cutoff of the 1600 slot,

is now about 3.9%.

While this project has suffered from some problems, especially in

getting a desirable Level of resolution, we have obtained our primary

objective. That is, we have shown that an existing plasma simulation

code may be used to predict, to a fair degree of accuracy, the cold cir-

cuit characteristics of a microwave circuit.

A very promising result is that the accuracy was not cost-Limited,

but rather was Limited by the stability problem as explained in Chapter V.

This is promising because if we were cost-Limited, we would be at the

S-.37-
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mercy of the computer industry. That is, no further significant progress

could be made until a faster, more efficient computer was built. As is,

there is good hope of solving the problem and going on to improved

solutions.

We give now some cost figures to illustrate the typical expense of

this method. The two runs (three and four cavities) needed to find the

data for the 1600 sLot shown in Figure 6.1 were performed at a combined

cost of under $150. These runs were performed overnight in batch mode

on a slow que (Low priority), which results in a charge of $12 per CPU

* hour. Therefore, the two runs required about 12 CPU hours on the VAX

11/780. This machine has a speed of approximately 0.5 MfLop. t

Future investigation should yield solutions to the high frequency

instability. The solution may be a combination of changing source

methods, grid Location, and applying Low-pass filters to the fields in

the numerical algorithms.

Subsequent to the completion of this project, the high frequency

noise problem experienced by the author was verified in a run performed ".*

by MRc personneL. It should be noted that this problem is unique to

the cyLindrical coordinate version of the code. The rectangular version

has been in existence for some time, and due to numerous test cases, there

is a high Level of confidence in its accuracy; Further work is currently

being done at MRC to determine the source of this problem and to aLLeviate it.

'-8
0t
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FIGURE 6.1 -Measured and calculated values for the Brittouin

plot of the coupled cavity circuits. By applying a least squares

fit to the calculated data, we see that it agrees quite well with

the measured data. In fact, over the middle one third of the

* band, which is the area of interest, the agreement is everywhere

within 1% error.
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APPENDIX A

A DERIVATION OF THE SECOND-ORDER ACCURACY
OF THE CENTERED-DIFFERENCE DERIVATIVE

FOR A NON-UNIFORM GRID

This appendix shows that, under certain conditions, the centered

difference approximation to the derivative of a function wilt be accurate

to second order without the restriction of a uniform grid. The signifi-

cance of this fact is that it demonstrates both the flexibility and the

integrity of the field algorithms used in this study.

The centered difference formula is given by

f(xi+1 )-f(xi_. )
F'(xi )  = xi+1-xi-1

where f denotes the true function (whose values are known) and F' denotes

the approximation to the true derivative f' (whose value is not known).

Now, if all derivatives of f exist on the interval xi<x<xi,,, then f may

be expanded in a Taylor series by defining

hi sxi-xi-

so that

• xi-,=xi-h i

x(i+,=xi+hi+,.

Then the expansion is

hi 2 hi

f(xi-hi) = f(xi)-hif'(xi)+ f"(xi) f"' (xi)+...

f(xi~hi+,) = f(xi) hi~lf,(xi) + i~ f-(xi) + 1 f,,, i) ..! 3!

and the numerical derivative is

-40-
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F'(xi)=hi 1 h {(h1+1I+hi)f'(xi)+/2(h1 21 -h2)f"Cx1)

1 3 3

+ 7 (h141 +h ) f"' (xi )+.._ _N

=f'(xi )+/2(hi+,-hi )f"(xi (hi 3+i+hi 3) f"' (x i )+. (A. 1)

From which it is obvious that second order accuracy [0(h 2)] is obtained

for the uniform spacing case; i.e. hi+ 1 = hi. However, if we require the

1 xi to be a function of a uniformLy spaced parameter n,

* ni T n0 (i-I )6n 6n =constant (A.2)

then second order accuracy may be retained without the stringent requirement

of a uniform grid.

Proof:

The functional dependence may be expressed as

xi-x 0 = a(ni-n0 )+b(ni ..no) 2  (A.3)

and (A.1) may be rewritteni as

* F'(xi) =f'(xi)+" 2(xi+ 1-2xi+xi- )f"(xi)+...__

00

-41-
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Now we make use of (A.2)

n=JTI ianl; niro =(i-1)6n); ni-l-rio = -2)6r)

So that the numerical derivative reduces to

+ [ai~i-2)6n+b( i-2) 2(6n)211f",(Xi )+**

-f'(xi)+"2{a&1i[i-2(i-1)+Ci-l)+(i-2)1+b 6n 2 [i 2-2(i-1 ) 2 +( i-2) 2]}

-f'(xi)+b6n
2 f"(X I )+.

= 2Thus, F'Cxi) f'(xi)+OC6)

arid the numericaL derivative is accurate to second order.
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APPENDIX B

THE DISCRETE FOURIER TRANSFORM

This appendix formulates the DFT pair which is used in this report

to gain frequency information from a Limited time history of the fieldz.

ALthough these equations may be found in texts on signal processing [5],

It seemed well to reproduce them here to clarify the relation between the

generalized parameters and the parameters of interest to us, which are

time and frequency. This also shows the tradeoff between computer cost

(total number of samples) and resolution (spacing in frequency samples).

In general, a function, f(t), on the interval 0 < t < T can be expressed

as an infinite sum of exponentials

f(t) = E Cn eJ(2ni/T)t
n = -a

If the function is sampled at discrete points such that

mT m = 1, 2, 3, ... , N

N

then

f(t) = f(m) Z . CneJ(2nr/N)m

Now, we can take advantage of the periodicity of the exponential

by substituting K-tN for n, where K takes on values only in the range from

I to N. Then we have

N
f(m) = E E CK,Z, eJ(2K r/N)m ej(2Nn/N)m

2,=-0 K=1

CI

9,=- CK, e( 2KT/N)m

N G

= e J(2K/N)m Z CK,Z
K= 1 9 =-,-
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The Last term is merely a summation of constants, so we can define a

new constant

F(K) Z CK,Z

Thus
N

f(m) E F(K) ej(2Kli/N)m
K=i

or equivalentty

N-1
f(m) Z F(n)ej(2n7I/N)m

n =O

In order to evaluate the coefficients F(n), we multiply both sides

by e-j27rn/N and sum from m=O to N-i.

N-iN-i N-i

Z f(m)e-j 2nkm/N Z E F(n)ej27m(n-Z)/N(.1
M=O m=O n=O

At this point, we make use of the orthogonality relation

Z j2mrO otherwise

I =*1

By Letting n-t=r in (6.1), we see that the RHS is only non-zero if

n=k-~r=2+kN. Since n=O, 1, ... , N-1 this is only true at one point. For

convenience, Let Z. be in the range 0 to N-i, then k must be zero for the

condition to be satisfied. Thus,

N-1 N-i
Z F(n) E ej2 m(n-k)/N F(P2JN

n=0 M=O
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and (B.1) becomes (dropping the normalization constant N)

N- m)eJ 2 m/N F(

m=O

and our transform pair is thus
f(m) = Z F(n)e J (2n /N)m m:O, 1, 2, N-1

n=O (B.2)
N-1 -j2~/~F(n) Z . f(m)e -J(2mrr/N)n n=O, 1, 2, ,N-1

m=O

* We define the argument of the exponential as wt, so that

ut = 27(mn/N)

or equivaLentLy

ft = mn/N.

We have already seen that the time is given by

N N

and

T E Nto

So that

t = mt0

and

* fn
Nt0 . H'!

0-
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APPENDIX C

A LEAST SQUARES FIT TO A
CUBIC POLYNOM IAL

The general equations for a Least squares fit of a discrete set of

data points to a polynomial of any order may be found in most texts on

numerical analysis []. However, with the inclusion of boundary conditions

on the curve, some of the variables may be eliminated and the equations

are changed. For our problem, the value of the curve at the endpoints

is not known, but the first derivative is. This appendix, therefore,

develops the equations necessary to find the cubic curve which minimizes

the square of the error from the data points white retaining a zero first

*- derivative at the endpoints.

Given a set of data points [xi;yi] i=1, 2, ... , m on the interval

O<x<l (note that aLL intervals may be normalized to this) and the cubic y
~interpolant

n p nY=a+bx +cx2 +dx 3

and the constraints - = 0 at the endpoints. We wish to minimize the error
dx

m
E = T (y Yi)2

with respect to the variables a, b, c, and d. However, we can eliminate

two of the variables because of the constraints.
y dY= dL = b+2c+3dx 2

dx

y'(0) = b = 0

and
Y' 1) = 2c-3d = 0

c =- 3 d
Sc that 

2

v=ad2 (X

-46-
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Now we minimize the error with respect to the two variables, a and d.

m 0
= 2 Z (Yi-y i) a.-

9E~ m9Y
d= 2 Z (Yi-yi) -i= 0

i°, ad

but we see from (C.1) that

ay, = Xi2(xi-3/2)

ad

therefore our equations are

Z (Y i-Y i) = 0 , -
Si = 1 " - "\.

(C.2)

m
. (Yi-yi)Xi2 (xi-3/2) = 0

i=1 ,

where

Yi = a~dxi (xi-3/2)"

So we have two equations from which our two unknowns (a and d) may be found.

I
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